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Numerical treatment of grid interfaces is one of the most important 
considerations for algorithms that employ different grids within 
the computational domain. The issue of numerical treatment of 
quadrilateral grid interfaces with a representative finite-volume 
Navier-Stokes integration scheme is addressed. Interfaces are created 
by local embedding of quadrilateral grids and are the borders between 
different grids. Grid embedding is one of the basic functions of adaptive 
algorithms that have been developed in order to increase both accuracy 
and efficiency of computations. The present work both develops and 
investigates interface treatment schemes that have certain properties 
such as accuracy and conservation. It is a novel study of interfaces for 
the case of viscous flow computations. Various treatments are proposed 
and evaluated with the emphasis being on a comparison between 
accurate and conservative treatments. Two methodologies have been 
followed in order to study interface treatments. The first is analytical 
and yields orders of possible numerical errors, while the second 
approach employs model test cases, which are especially designed to 
evaluate certain aspects of the described interface treatments. Also, a 
transonic airfoil flow case is included as an example of accuracy and 
robustness of a particular interface treatment scheme. All numerical 
treatment schemes that are discussed have been coded and 
evaluated. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

Grid embedding consists of dividing grid cells locally so 
that the truncation error is relatively small and equally dis- 
tributed throughout the solution domain. This is accom- 
plished by increasing grid solution locally in regions in 
which flow features exist. In this way, computations with 
grid embedding require fewer computer resources than 
when a globally relined grid is employed [l-6]. 

Embedding of quadrilateral cells introduces internal 
boundaries between cells with either different refinement 
levels or with different types of subdivisions. Grid interfaces 
in turn can be categorized into two main groups depending 
upon the type of cell division. The first are interfaces which 
are characterized by an abrupt change in cell size only. The 
grid is continuous across the interface, but cell metrics 
change as shown in Fig. la (metric discontinuous grid). The 

second type includes grid lines which actually are inter- 
rupted by interfaces as illustrated in Fig. lb (discontinuous 
grid). In this case cells on the coarser side of the interface 
may contain additional nodes at the face midpoint. 

Numerical treatments for interfaces have been examined 
in [7, S] for the potential equation and in [9-131 for the 
Euler equations. The present paper presents a novel study of 
grid interfaces for the case of the Navier-Stokes equations. 
There are a number of problems which are imposed on the 
integration scheme due to the presence of interfaces. 
The sudden change in grid size introduces a significant 
stretching error, which may result in a reduction of order of 
accuracy for the scheme. Existing schemes have been 
developed for cells with nodes at only the four cell corners, 
and they require some modification in order to take into 
account the extra face nodes. Another important issue is 
maintaining conservation across interfaces. The fluxes 
across the boundaries surrounding an interface cell should 
cancel one another in order for the scheme to be conser- 
vative in a steady state situation. Also, the form of the 
artificial dissipation operator at an interface (convective, 
dissipative) deserves special consideration. Other important 
issues are coding complexity and the ease with which 
an interface treatment scheme can be extended to three 
dimensions. 

It is clear that these considerations impose serious limita- 
tions on construction of an interface scheme and that in 
many cases the above requirements contradict one another. 
In fact, simultaneous achievement of both conservation and 
accuracy is very difficult and even impossible in most cases. 
However, not all of the above requirements are important 
for a specific interface. For regions in which solution varia- 
tions are relatively small, reduction in order of accuracy has 
a negligible effect on numerical results. Conservation proves 
to be an important property mostly in cases of moving 
shocks for accurate prediction of their location and speed. 
Conversely, accuracy is more of an issue in a boundary 
layer, since the second-order derivatives (viscous terms) are 
important and are more “sensitive” to grid stretching error 
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(a) metric discontinuous (b) discontinuous 

FIG. 1. Types of grid interfaces: (a) metric discontinuous; (b) discon- 
tinuous. 

than first-order derivatives (inviscid terms). Ni’s scheme is a 
typical central-space differencing scheme and faces the same 
interface problems that other schemes, which discretize 
spatial derivatives with central differences, face [ 14-161. 

Two methodologies have been followed in order to study 
interface treatments. The first is analytical and yields orders 
of possible numerical errors, while the second approach 
employs model test cases, which are especially designed 
to evaluate certain aspects of the described interface 
treatments. Also, the effect on solution of interfaces that 
are located within regions of significant flow gradients is 
monitored. All treatments that are discussed have been 
coded and evaluated. 

In the following, the Navier-Stokes algorithm that was 
employed is described briefly. Then, an accurate but non- 
conservative treatment is presented and investigated. The 
nonconservation errors which are associated with inviscid, 
viscous, and smoothing terms are evaluated, followed by a 
numerical test case. Then a way of deriving conservative 
treatments is presented. Each one of the operators that 
constitute the scheme, namely, the inviscid, viscous, and 
smoothing terms, are examined separately. The problems 
of stretching error and of the convective form, which 
the smoothing operators take for this treatment, are 
investigated. Then, the two interface treatments are com- 
pared, together with a hybrid third treatment, which is a 
combination of the two. Finally, a transonic airfoil flow case 
is presented in order to investigate both accuracy and 
robustness of a specific interface treatment. 

2. NAVIER-STOKES ALGORITHM 

An explicit, finite volume scheme is employed in order 
to integrate the full Navier-Stokes equations. The state 
variables are stored at grid nodes, and both second as well 
as fourth order artificial dissipation is employed in order to 
capture shocks and to suppress oddeven decoupling of the 
solution. The scheme is typical of a class of finite-volume, 
explicit Navier-Stokes solvers [ 17, 181, and therefore, both 
the present approach of grid interface study and the conclu- 
sions can be applicable to those other schemes, as well. 

The purpose for describing the algorithm is to present the 
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formulas to be used in the interface study. The overall 
scheme is described briefly, since the emphasis is on treat- 
ment of grid interfaces. For more details on the algorithm 
the reader is referred to [ 1, 21. 

The system of the two-dimensional Navier-Stokes 
equations may be written in Cartesian two-dimensional 
conservation form as 

au aF ac aR as -+-+-=---+--, 
at ax ay ax ay 

where 

are state and convective flux vectors in the x- and 
y-directions, respectively. The viscous flux vectors are 

where G,, zyv, L are viscous stresses, and qx, qY are heat 
conduction terms: In the above relations, p is density, u and 
u are velocity components, E is total internal energy per unit 
volume, p is pressure, and T is the temperature. 

2.1. Inviscid Terms 

A one-step Lax-Wendroff -type integration scheme due to 
Ni [ 19) has been employed for discretization of the convec- 
tive terms of the Navier-Stokes equations. Omitting the 
viscous terms, the Euler approximation is 

au aF aG at+%+-=o, ay 
where U is the state-variable vector, and F, G are the 
convective terms flux vectors as defined in (1). Integration 
of the above relation over the area of a cell, leads to the 
following equivalent integral relation: 

d 
z ss u dx dy + kll faces 

(Fdy-Gdx)=O. (3) 
cell area 

The first term in the above relation represents the change in 
time of the state vector over the cell area S, and is dis- 
cretized as (dU/dt)S, where U is the state-vector value at 
the center of a cell, and dU = U”+ ’ - U” is its change over 
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one time step. The second term in (3), represents the convec- 
tive fluxes across the cell faces and is computed via the 
trapezoidal integration rule, which is second-order accurate. 

The state-vector change in time dU at the center of the 
cell has to be distributed to the corners. Consider the change 
6U at a grid node and a second-order Taylor series 
expansion in time: 

The second-order time term in (4) is calculated following 
the LaxxWendroff [20] approach which replaces time 
derivatives with spatial derivatives from the governing 
equation. 

Finally, the following formulas for the distribution of the 
time change dU to the cell corners, are derived, 

(m),,.=a{AU-Af-Ag} (5a) 

(6U),w,=~{AU-Af+Ag} (5b) 

(6U),,=~{AU+Af+Ag} (5c) 

(6U),,=+{AU+Af-Ag}, (5d) 

where 

Af+AFAy’-AGAx’) (ha) 

The subscripts SW, nw, ne, se denote the four corners of a 
grid cell. The cell-metric terms Ax’, Ay’, Axm, Ay” are the 
x, y-dimensions along the two directions of a cell that are 
denoted by superscripts 1, m. 

2.2. Viscous Terms 

The above described Lax-Wendroff-type scheme for the 
discretization of inviscid terms can be extended to include 
viscous terms as well. The change in time of the state 
variables, which is contributed to by the viscous terms, is 
also given by the Taylor series expansion (4). Only the lirst- 
order temporal term in the Taylor expansion (4) is kept, 
which yields a scheme that is first-order accurate in time and 
which eliminates the need to compute viscous term 
Jacobians. The development of the scheme starts with a 
consideration of the viscous part of the NavierStokes 
equations in integral form over a grid cell: 

The terms represented by R, S include stress and heat 
conduction terms. 

The unsteady term in (7) is discretized as (AU,i,/At) S. 
The term dUvi, represents the change in time of the state- 
vector at a grid node due to the viscous terms only. After 
some manipulations it can be found that the cell contribu- 
tions to the change in time AU,i, of state-vector U, due to 
the viscous terms at the four cell corners, are given by the 
formulas 

(AU,,,),,,.=: {(+~sd+RWdym) 

-(+S’Ax’-SwAx”)} 

(du,,,),,,,.=$ {(+RNdf+RWdym) 

-(+SNAx’+SWAxm)} 

(AU~i~)~~=~ {(-RNAf+REAym) 

- ( -SN Ax’+SE Axm)} 

(AU”i,),s~=~ {(-R”AJJ-R”A~~) 

-(-S’Ax’-S”Ax”)}, 

@aI 

(8b) 

(8~) 

(8d) 

where the subscripts SW, nw, ne, se denote the four cell cor- 
ners, and the superscripts S, W, N, E represent the four cell 
faces. For example, the viscous term RS denotes that R is 
evaluated at the south face. The above spatial discretization 
is second-order accurate for a uniform mesh [ 11. 

2.3. Artifi:cial Dissipation 

Smoothing that is accomplished by explicitly adding 
dissipation is employed by the vast majority of existing 
schemes, especially those concerned with compressible 
flows. There are two main types of such artificial smoothing: 
one is used to capture shocks; the second is designed to 
damp spurious oscillations throughout the field and to 
suppress odd-even decoupling of the solution. 

Second-order (shock) smoothing. Second-order smooth- 
ing provides damping necessary to smear a shock, which 
ideally has zero thickness, in such a way that oscillation are 
avoided. Since such smoothing is required only in shock 
regions, a switch is employed to turn it off elsewhere. 

In two dimensions, the damping term may have the form: 

\ --- -, I Consider the specific discretization for a cell-vertex scheme 
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at node 0 (Fig. 2). The node receives contributions from The second step duplicates the first, replacing state 
each of the four surrounding cells; that from cell A is variables by second-order differences from the first step: 

s(2)= + (P, + P5) - (P* + PO) 
OA 

P,+P,+P,+P, 

x flu3 + us) - (u2 + uo)> 

-Di~=D;+D;+D:+D;-4D:, 

-D:,=D:+D;+D:+D;-40; 

-D:,=D;+Di+D;+D;-40; 
(13) 

+ 
v2 + P3) - (PO + P,) 

P,+P,+P,+P, 

D;,=D:+D:+D;+D;-40;. 

(10) The operator introduces a third-order error into the 
solution. 

Similarly, from cell D it is 
2.4. Conservation 

s’*‘= + 
OD 

X 

+ 

(PI + P4) - (P2 + PO) 

P,+P,+P,+Po 

(u, + u4) - (u2 + uo)) 

(PI + P2) - (P4 + PO) 1 

P,+P*+P,+P, 1 

The Navier-Stokes equations express conservation of 
mass, momentum, and energy. The flow domain is divided 
into smaller volumes, and the numerical scheme then is 
applied on each of the cells. For global accuracy of the 
scheme, it is important to conserve the above flow quan- 

x {(u, + u2) - (u4 + uo,>. (11) 
Similar expressions furnish contributions from cells C and 
B. Pressure differences in the switch are normalized by the 
sum of the pressures at the four corners of each cell. The 
shock smoothing operator introduces a first-order error to 
the solution at the shock region. 

Fourth-order smoothing. Fourth-order smoothing is 
used in order to suppress odd-even modes and to damp 
spurious oscillations. The operator is formed in two steps. 
The second-order difference operator is formed in the first 
step (Fig. 2): 

D;,=U,+U,+U,+U,--24, 
2 Do,=u,+uo+u,+u,-424, 

Die = t&j + 244 + Uo + U7 - 4U, 

DiD = uq + u1 + u2 + u,, - 4u,. 

A 

(12) 

tities over each individual cell and therefore over the entire 
domain. Schemes that accomplish this are said to have the 
conservation property. 

A definition of conservation can be derived by con- 
sidering the Navier-Stokes equations in integral form over 
the computation domain: 

d 
z 

Udxdy= -$ F dy - G dx 
domain boundary 

+ 
P 

R dy - S dx. (14) 
domain boundary 

The domain is divided into smaller control surfaces, the 
cells, and the above expression leads to the following 
general definition of conservation: 

1 
z -.6U .Anode= 

node’ Atnode node boundary terms. (15) 

In the above, Anode and Atnode are suitable area and time- 
step which surround the grid nodes, and they satisfy the 
property 

c nodes Anode = &omam . 

For the present scheme, the change 8Uno& at each node is 
the sum of the contributed changes from the adjoining cells, 
as given by formulae (5) and (8). Therefore, the definition of 
conservation can be written as 

8 

c --L cc ~Ucorner ce”s Atnode 
. AceI,) = boundary terms. (16) 

Using distribution formulae (5) and (8) the above equation 
FIG. 2. Node and cell designations for smoothing operators. yields: ZAU = boundary terms, that is simply the sum of the 
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flux balances over all the cells, which consists of boundary 
terms only. 

The second- and fourth-order smoothing operators are 
not scaled with the term At/S, and therefore the appropriate 
definition of conservation is 

c nodes fiUnode = boundary terms. (17) 

The distribution formulae (lo), (11) (13) satisfy the above 
equation, since CT dUcOrner is zero, and therefore the 
smoothing operator is conservative, as well. 

3. ACCURATE INTERFACE TREATMENT 

Consider the two types of discontinuous and metric 
discontinuous grids of Fig. 3 and the interface node a. For 
both types, cells A,, A,, A,, A, would have normally been 
employed in order to evaluate the inviscid, viscous, 
and smoothing contributions to node a. Cells A,, A, are 
embedded line cells, while cells A,, A, are unembedded 
coarse cells with vertical dimensions twice those of cells 
A,, A,. It is clear that an evaluation, for example, of the 
viscous derivative u,, at node a, 

suffers from a severe stretching error. The order of accuracy 
reduces to first. In order to alleviate these problems, use is 
made of the “parent” cells A;, A;, with roughly the same 
size as the coarse cells A,, A,. The expression for uYp now 
becomes 

(Fig. 3) which is second-order accurate. In the case of a 
discontinuous interface, the treatment ignores the interface 

a, 

h a _---------_--------- 
I A4 II A.3 I 
I II 
I 

* I A 
, I 

1 IQ “L t 

I II I 

L--------JL--------J 
4 4 

FIG. 3. Interface treatment without stretching error. 

face node c, and the state-variable values at the node are 
obtained through interpolation from corresponding values 
at interface nodes b, a. The above also “ignores” the type of 
division (directional or two-directional) of the interface 
cells, and both discontinuous and metric discontinuous 
types of interfaces are treated identically, which simplifies 
the interface algorithm significantly. This is very important, 
if extension of the algorithm to three dimensions is of 
interest. 

3.1. Nonconservation Error 

However, the above does suffer from a nonconservation 
error. Use of “parent” cells A;, A; instead of line cells 
A,, A,, as well as the averaging that is used for the middle 
interface node c, introduces a nonconservation error. This 
error will now be evaluated by separately considering 
the inviscid, viscous, and smoothing parts of the scheme. 
The integration would be conservative if the sum E = 
2 nodes(S/At) 6U consisted only of contributions from the 
boundary nodes (see Eq. (15)). Consider the interface 
configuration of Fig. 4. Using distribution formulas for the 
inviscid terms (5) and calculating the above sum over nodes 
1 through 11, one obtains 

E= +s 
A > 

+~~(~u,-Ag,) 
B 

+~~(Acl,-Ag,,+~AU~+~A~~ 
C D b 

(18) 

In the above expression S, At are the area and time-step of 

A 

FIG. 4. Interface configuration for evaluation of nonconservation error. 
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each cell. The terms dg are the second-order inviscid 
distribution terms given by formulas (6). For example, 

These are higher order terms compared to AU’s, and they 
will be neglected in the evaluation of the leading term of 
the nonconservation error. The change with time of the 
state-vector in cell A is given by the expression 

AtA AuA=s A i 

y+Y,- V,)-yqX,-X,)+&j, 

where in the following, bt will denote a contribution from 
boundary nodes 1, 4, 7, 10 and 3, 6, 9, 11. The expressions 
of AU’s for the rest of the cells are similar, and after 
substituting to (18), the leading order term for the non- 
conservation error is 

E= +~{(2F,-F,F,)-(28,+F,+F,)} 

-?{(2G,-G,-G,)-(2G,+G,+G,)}+bt, 

(19) 

where 

AX=Xg-X,=X8-Xx7=X6-X5=X5-X4 

AY= Y9- Y,= Y8- Y,= Y,- Y,= Y,- Y4. (20) 

Observe that the nonconservation error due to inviscid 
terms is first order. It is local error involving flux-vector 
values at interface nodes 7, 8, 9 and at neighbouring nodes 
4, 5, 6. 

Similarly for the viscous terms, the sum of contributions 
AUvi, from nodes 1 through 11 (formulas (8)) is considered: 

E= Cnodes $ A uvis z nodes ” s Unode =20,+2D,t 
64 

= -R;.Ay’;l-R,W.Ay”,+S;.Ax’; 

-S,W.Ax’ll+bt. (21) 

The nonconservation error is first order and depends upon 
the solution at interface nodes 7, 8,9 and at neighbouring 
nodes 4, 5, 6. 

The above D,, D, terms of the nonconservation error 
represent second-order differences of the solution, which 
implies that the error is of second order. 

3.2. Example Case 

The definition of conservation for the smoothing An example serves to illustrate the performance of the 
operator is given by Eq. (17) (Cnodes dUnode = bt.) Consider above interface treatment. A 4% bump in a channel in 
the second-order smoothing distribution formulas (9) and supersonic flow (M, = 1.35) was computed employing an 
define the operators SL), 6-L’) to denote differences of initial mesh of 25 x 25 and with embedding placed close to 
state-vector variables along the x, y-directions of cell (.). the incoming and reflected shocks at the upper wall of the 

Summing up the shock smoothing distributions to nodes 1 
through 11 of interface formulation of Fig. 4, one obtains 

E= Cnodes4 Sunode 

= 26frP sy- d<‘P q’U+ 26FP s.;u 

- i?.;‘P S;t’U + 6<P “;f u- d;“P S;2’U. (22) 

The nonconservation error is maximum in the case of a 
shock which is located at and parallel to an interface. In this 
case, the largest term in (22) is 

which is 0( 1). However, if the shock is located just one cell 
away from the interface, the 0( 1) term vanishes. In practice, 
many schemes capture a shock within approximately four 
cells, which implies that interfaces should be at least four 
cells away from shocks which are parallel to them. 

Finally, the fourth-order smoothing nonconservation 
error is evaluated on defining S” to be the pressure switch 
at cell (.) that is used to turn fourth-order smoothing off 
near shocks, and D” is the sum of the second-order 
differences at the four cell corners (e.g., DE = 
D,+Dz,+D5+DJ. 

= 2SB(DB - 20, - 20,) + 2Sc(Dc - 20, - 20,) 

+ 3SA’(DA’ - 20, - 20,) + SA(DA - 20, - 20,). 

Away from a shock, the switches SB, SC, SA’, S are the 
same and equal to a smoothing coefficient cr4, while they are 
zero near shocks. Thus, the above sum resumes the form 

c nodes ’ s Unode =30,+3D,+D,,+D,, 
c4 

-2D,-20,+4D,. (23) 

However, D, = i(D, + D9), which leads to 

bt. (24) 
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(a) embedded mesh 

u-i 0 
_\j__ 

Yl 
0.00 050 1.00 150 200 

x10-3 ml7 

(b) convergence history 

(c) Mach contours ( + denotes interface ) 

FIG. 5. Shock through interfaces for a 4% bump in a channel 
(M, = 1.35, Re = 23 x 103): (a) embedded mesh; (b) convergence history; 
(c) Mach number contours ( + denotes interface). 

channel (Fig. 5a) in order to test robustness of the interface 
treatment. The solid boundary extends from the leading 
edge of the bump up to the exit. The case converged despite 
the nonconservation error, as shown in .Fig. 5b and the 
resulting flow field is depicted in Fig. 5c in terms of Mach 
number contours. Both shock location and strength prove 
to be the same as those observed using a globally fine mesh. 
In Section 5.1 the above treatment will be applied to a 
transonic flow airfoil case. 

4. CONSERVATIVE INTERFACE TREATMENT 

In the nonconservative treatment, the equations are 
not integrated at the middle interface node with solution 

variables being interpolated to that node. Any conservative 
treatment should include this face node in the integration 
procedure. Both the line integration around the cell and the 
distribution of changes in time to cell nodes should consider 
the face node as well. A way of constructing conservative 
treatments will now be described for each one of the 
contributing terms, i.e., the inviscid, the viscous, and the 
smoothing terms. The same interface configuration of Fig. 4 
is used for the study. 

4.1. Inviscid Terms 

The fluxes across the interface from the surrounding cells 
A, B, and C (Fig. 6) should cancel in order for the treatment 
to be conservative at steady state. This is accomplished by 
performing a special integration around cell A that takes 
into account face node 8. For a trapezoidal integration 
around interface cells A, B, and C, the interface fluxes H,, 
H,, H, are 

H,= +#,+F&(Ys- Y7) 

-~G+W+G-&) 

+m+eMyg- Y8) 

- iV& + G,). (X,-X,) 

H,= ++(Fs+F,).(Y7- Y,) 

-f(G+G)4?f--&) 

H,= +$(F,+F&(Y,- Y,) 

- ;(G9 + G,) . (X, -A-,). 

(25a) 

(25b) 

(254 

The above cancellation of fluxes is sufficient for conserva- 
tion for schemes which solve the steady Navier-Stokes 
equations. For schemes, which include the unsteady term in 
the integration procedure, the sufficient condition for 
conservation is Eq. (15) and the above relation is only a 
necessary condition. 

I I I 
1 2 3 

FIG. 6. Conservative interface treatment. 
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In the normal case of a cell with four nodes, the cell 
change in time of the state-variables is allocated to the cor- 
ners using the same distribution coefficient, which is equal 
to i (Eq. (5)). However, in the case in which a fifth face node 
exists, the distribution coefficients at nodes 7, 8, and 9 
should be modified. By symmetry, the distribution coef- 
ficients to nodes 7 and 9 must be the same and, say, equal 
to a, while the distribution coefficient to face node 8 is 6. 
These are unknowns, which are to be evaluated so that the 
inviscid distributions satisfy the definition of conservation 

In order to be able to use the regular scheme distribution 
formulas (5) for face node 8 as well, consider cell A to con- 
sist of two subcells A i, A, (Fig. 7). Again by symmetry, the 
distribution coefficients to node 8 from each of subcells 
A,, A, is b/2. The forms of AU,+, AUA2, AfA,, Af+, Ag,,, 
AgAZ will be such as to make the treatment conservative, 
and they remain to be found. 

Consider now the sum in the definition of conservation 
for the interface configuration of Fig. 6, 

c nodes $ 6 Unode 

+~A(/,+$AU, 
B C 

+2: AU,,+?: AU,, 
Al A2 

+2; (AfA, -Ag,,) 
AI 

+%;(-dfAz-Ag,+) 
A2 

(27) 

The above expression should consist of boundary node 

terms only, in order for the treatment to be conservative for 
both steady-state and unsteady computations. The terms 
AU, Af, Ag at subcells A,, A, express the change in time of 
state-variables within cell A, which is the cell which is 
actually used in the integration process and, thus, 

AUA,=AUA2=AUA 

AfA, = AfAz = AfA (28) 

A&T,, = AgA, =Ag,. 

The sum of (27) therefore becomes 

+%(;-2a-b)&,. (29) 

The sum involving the AU terms yields boundary node 
contributions only, if 

$+2a+b=132a+b=;. (30) 

If (30) is satisfied, the last term in (29), which involves Ag 
vanishes. Clearly, Eq. (30) is the condition that any inter- 
face distribution coefficients scheme has to satisfy. There are 
finite combinations of a and b that satisfy (30). Choosing 
b = 2a. it is obtained: 

a= k, b=& (31) 

The distribution coefficients express the part of the cell 
area which is allocated to each one of the cell nodes. In the 
normal case of a cell with four nodes, the cell area is divided 
into four equal areas, one for each node, and thus a fourth 
of the total change AU is allocated to each node. However, 
if a fifth face node exists, the cell area is allocated to the five 
nodes as illustrated in Fig. 8. The ratios of each of the areas 
to the cell area are the distribution coefficients. Another 

7 8 9 

FIG. 7. Subcell distributions to interface nodes 

10 11 

1 ’ 1 

FIG. 8. Cell area allocation to nodes. 
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derivation of the above distribution coefficients consider 
time-accuracy of the interface treatment. Shape functions AU,= $ wc4L- Y,)SR,,(Y,,- Y,.,)] ( 1 9 

and finite-element theory can be employed to verify the 
above values for the distribution coefficients to the interface 
nodes. 

4.2. Viscous Terms 

The subcells into which the coarse interface cell A is 

wL(K- Yw)+R,(Yn- Y,.)l 
10 

- CSJ~,. - X,.) + &(Xn - X,.)1 > (324 

divided (Fig. 8), will now be employed in order to include 
face node 8 into the integration process for the viscous 
terms. The viscous fluxes, which consist of stress terms 
should cancel each other in the interior of the domain of - CS,(~,-~,.)+S,(X,.-~,)l). We) 

Fig. 9. Interface cell A is divided into five cells, and the nota- 
tion to be used is shown in Fig. 9. The stress flux evaluation 

The subscripts of the R and S terms represent the points at 

in the interior of cell A consists of line integrations along the 
which these terms are evaluated. The R, S-values in the 

broken lines. For this purpose, points W, e, n, sr, s2, cr, c2, 
interior points c, , c2, c are evaluated via the following 

c, which lie at the faces and in the interior of cell A, are 
interpolations: 

employed. The values of the stresses at these points are 
obtained by using interpolations, in such a way that fluxes 

R,zRw+Re < s,=sw.+& 
2’ ( 2 (33a) 

in the interior of cell A cancel. 
More specifically, the viscous contributions from cell A to R =Rw+R, 

cl 2 ’ 
s =s,+s, 

its five nodes are c1 2 Wb) 

4, = R,.+Re s, =Sc+ se 
fC&(L- Ys,)+UYw,- Yc,)l 

2’ r2 2’ 
(33c) 

7 Different interpolations to obtain R,, S, (e.g., R,. = i(R, + 

-CS,,(~,.,-~,,)+S,.(X,.-~,.,)l} Wa) (R,, + R,,)/2)) result in a nonconservative treatment. 
For steady-state evaluations, the unsteady term At/S for 

2{C&(Ycz- Y.sd+R,.(Y,.,- Y,.,) 
each node can be the same and equal to (At/S), . This 

8 simplifies coding of the interface algorithm, and required 

+ Rsl(Ys, - Y,.,)l- C~,,(Jf,* -X,2) 
information is strictly within each cell, which is important 
for unstructured grid algorithms. However, if time accuracy 
is required, then different ratios At/S should be used for 

+ SAX,., - J-c,) + S,,(X,, -X,.,)1 > (32b) each node. 

Stretching error. The above treatment suffers from 

10 n 
I 

I 

11 

Cl N’- - - - - E----, c2 
I I 

I I - - _ 

I I 

I I 
7 sl a s2 9 I I 

sl ’ 8 ’ s2 
L - ,- - 

c 

! I 

FIG. 10. Abrupt change in grid size at an interface introduces 
FIG. 9. Conservative treatment of viscous terms. accuracy error to the viscous terms evaluation. 

581/98/l-IO 

stretching error. Consider face node 8 and the secondary 
cell, which is employed in order to evaluate the viscous 
derivatives such as uYY (Fig. 10). Distance c8 is about twice 
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distance 8c’, which introduces a serious error. The evalua- 
tion could be made accurate if special area weighting factors 
are used when performing the line integration around cell 
s 1~2~‘. This will result in noncancellation of the fluxes 
through the faces and, therefore, in nonconservation. 

4.3. Shock Smoothing 

The distributions to cell nodes due to second-order 
smoothing (lo), (11) yield a conservative operator for a 
normal cell with four nodes. These distributions should be 
modified in order to maintain conservation when face nodes 
exist. The same approach that was employed in order to 
derive conservative interface distributions for the inviscid 
terms is followed. The two 
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which turns the operator off near shocks, and II”’ is the sum DA is defined as 
of the second-order difference values D,.) at cell nodes: 

DA=4aD,+4aD,+4bD,+D,,+D,,, (41) 
c nodes 4 6 Unode = + 4aSA(2DA - 40, - 40,) 

+SA(2DA-4D,0-4D,,) which yields 

+2bSA’(DA’-4D8) 

+ 26s A’( DA2 - 40,). (39) 
c ..,.s~=(2a+b-;) DA. (42) 

The subcell terms SA’, SA2, DA’, DA2 are defined as The treatment is conservative if 

which leads to 
and by choosing b = 2a, the distribution coefficients are 
once more 

‘CT ,,,,,s~=(2a+b+;) DA-44aD,-4aD, a= $, b= a, (43) 

-4bD,-D,,-D,,. (40) as in (31) and (37). The second-order difference operator 

Globally fine mesh solution (no interfaces) 

+ denotes interface 

FIG. 11. Interfaces near a shock--conservative interface treatment for a 4% bump in a channel (M, = 1.35, Re = 104). 
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t 
Mass Flow across channel 

-1 

FIG. 12. No mass error with conservative interface treatment. 

at face node 8, D,, can be arbitrary without violating 
conservation. A choice that has been made is to consider 

D Jb+D, 
8 2 . (44) 

Again, the above conservative operator is conuectioe and 
conservation has to be sacrificed in order to make it 
dissipative. 

4.5. Test Case 

The flow through the 4% bump in a channel (M, = 1.35, 
Re = 104) was computed using an initial mesh of 25 x 25 and 
one level of embedding, which was placed at various 
locations within the domain as shown in Fig. 11, which 
depicts the solution via pressure coefficient contours. The 
embedded mesh solutions may be compared with the 
globally fine mesh solution that is shown in the same 
figure. The extent of the coarse mesh regions is different in 
Figs. llb, c, which introduces differences to the solutions. 

Finally, in Fig. 12 the mass flow across the channel is 
illustrated for the embedded case of Fig. 1 lc and shows that 
there is no mass error between the inlet and the outlet of the 
channel. The mass increases on the bump region due to 
addition of shock smoothing. However, there is no net 
addition or subtraction of mass over that area, since the 
smoothing operator is conservative. 

5. ACCURATE VERSUS CONSERVATIVE 
INTERFACE TREATMENTS 

There are two main advantages for an accurate interface 
treatment. First is the accuracy which is retained at the 
interface despite the abrupt change in cell-size. This has 
proven to be a very important property for cases in which 
the interface lies within a viscous region. On the other 
hand, the conservative treatment suffers from a significant 
stretching error. This is clearly observed in Fig. 13a which 
shows skin friction distribution for the subsonic (M, = 0.5) 
5% bump with interfaces within the boundary layer. It is 
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- globally fine 

. accurate 

- conservative 

i- 

WC 

(a) accurate , conservative treatments 

- globally fine 

l mixed 
- - conservative 

~~ --~-.- -~- ~-- ---- 
0 -0.5 0.0 0.5 1.0 15 2.0 

X/C 

(b) ‘mixed’, conservative treatments 

FIG. 13. Accurate, conservative, and mixed interface treatments for 
interfaces inside a boundary layer. 

observed that upstream of separation the two treatments 
give approximately the same result. However, as separation 
is approached and the boundary layer brolile becomes 
curved at the region where the interfaces are placed, the 
stretching error in the conservative treatment shows up. 

In order to investigate this point further, a mixed 
interface treatment has been employed. According to this 
treatment, the viscous terms are treated with the accurate 
interface treatment, while the inviscid and smoothing parts 
are treated conservatively. Figure 13b clearly demonstrates 
that the accuracy problem disappears. Therefore, the 
stretching error in the evaluation of the viscous interface 
terms is responsible for the observed inaccuracy of the fully 
conservative treatment in Fig. 13a. 

The second advantage if the accurate but nonconser- 
vative treatment is its fairly simple implementation. All 
kinds of interfaces are treated in the same way by employing 
the parent cell of the fine interface cells (cell A’ in Fig. 4) in 
order to integrate the interface nodes. The algorithm does 
not “care” whether there are one or more interface nodes at 
an interface cell, the treatment being the same as illustrated 
in Fig. 14a. In the case of the conservative treatment, 
however, the distribution coefficients are different depend- 
ing upon the number of face nodes of an interface cell. For 
example, the distribution coefficients and the splitting of the 
coarse interface cell for the very common case of a cell with 
two face nodes are illustrated in Fig. 14b. The numbers 
denote the distribution coefficients used for the inviscid 
terms, and the six areas are the ones that are employed for 
integration of the viscous terms. There are four different 
such configurations of cells with two face nodes depending 
upon location of the face nodes. 

Another problem associated with the conservative treat- 
ment is the locally dispersive smoothing operators and the 
ambiguity in formulation of that part of the smoothing 
operator which corresponds to the coarse interface cell. As 
it was seen, there are numerous forms that the operator can 
assume depending upon the way in which the face node is 
taken into account. The determination of distribution coef- 
ficients u and b is not unique. A conservation requirement is 
not sufficient to determine both coefficients, and other 
considerations such as time accuracy and the form of the 
smoothing operator are taken into account in order to 
determine these values. Finally, the same approach, with the 
“parent” cell now being a cube, can be carried out for 30 
interfaces. The coding of the conservative treatment, on the 
other hand, is fairly complicated. 

The main weakness of an accurate treatment is the 
nonconservation error induced by the shock smoothing 
operator. In the case of a shock being located at the inter- 
face and parallel to it, the nonconservation error is 0( 1). 
Figure 15 compares mass flow across the 4 % bump for the 
case of supersonic flow with M, = 1.35 with the nonconser- 

(a) accurate (b)conservative 

FIG. 14. Accurate versus conservative interface treatment for cells 
with two face nodes. 
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Mass flow across channel 

- globally fine 

0 conservative 
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FIG. 15. Comparison of interface treatments for interfaces near shock. 

vative and conservative treatments, as well as a globally tine 
mesh. The nonconservative treatment induces a mass flow 
error that is approximately five times larger than the error 
introduced by the conservative treatment. The nonconser- 
vation error for both the globally fine (no interfaces) and 
the conservative case is very small (0.05 % ). 

As far as computing time is concerned, both interface 
treatments are relatively inexpensive. The number of inter- 
faces for a typical computation within a domain of N x N 
points is usually of O(N) and therefore, the CPU time which 
is consumed is not appreciable. The accurate treatment 
integrates two cells for each interface (e.g., A and A’ in 
Fig. 4), while the conservative treatment integrates cell A 
only. However, the special trapezoidal integration, which 
takes into account possible face nodes and the special dis- 
tributions to the interface nodes, eliminates this advantage. 

5.1. Airfoil in Transonic Flow 

The flow around a NACA 0012 airfoil under transonic 
conditions was among the cases considered in [ 11 in order 

to evaluate a Navier-Stokes adaptive algorithm. The flow 
conditions were: M, = 0.754, Re = 3.76 x 106, c( = 3.02”. 
The interface treatment of Section 3 was employed. A shock 
forms on the upper side of the airfoil, which interacts with 
the boundary layer. An initial C-mesh of 65 x 41 points was 
applied and three levels of embedded meshes were intro- 
duced by the algorithm as illustrated in Fig. 16. Figure 17a 
shows a view of the shock-boundary layer interaction 
region. The severe adverse pressure gradient that is induced 
by the normal shock causes the boundary layer to thicken 
considerably and eventually to separate at the foot of the 
normal shock. A separation bubble is formed and it is cap- 
tured in detail by the adaptive algorithm. The numerical 
results have been compared with experimental data and the 
agreement between the two was very good [ 11. 

Performance of the interface treatment of Section 3 is 
examined by showing the grid interface locations within the 
flow domain. Figure 17a illustrates interface positions at the 
shock-boundary layer interaction region, while Fig. 17b 
concentrates on the trailing edge region. A large portion of 
the interfaces lie parallel to the shear layer with significant 
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-0.50 -0.25 6.00 0.25 0.50 0.75 1.00 1.2 

FIG. 16. Three-level embedded grid-transonic NACA 0012 (M, = 0.754, Re = 3.76 x 106, a = 3.02”). 

FIG. 17. Mach number contours field with interface locations-transonic NACA 0012 (M, = 0.754, Re = 3.76 x 106, a = 3.02”): (a) shock/boundary 
layer interaction region (vertical scale enlarged); (b) trailing edge region (vertical scale enlarged). 
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flow gradients across them. The presence of interfaces does 
not disturb the flow solution and almost no “kinks” are 
observed. 

6. SUMMARY 

Employment of adaptive quadrilateral grid embedding 
introduces interfaces into the computation domain. A 
special scheme is required for numerical treatment of those 
special areas. Development and evaluation of such a scheme 
is a main issue for an adaptive solver. 

A Navier-Stokes scheme, which is typical of a class 
of central-space differencing schemes, was described. The 
viscous terms of the Navier-Stokes equations pose signifi- 
cant accuracy problems, especially if the grid is stretched. A 
treatment that avoids grid stretching error is presented and 
evaluated in terms of accuracy and nonconservation error. 
The most significant nonconservation error is due to the 
shock-smoothing operator for the case of a shock that is 
located at an interface and that is parallel to that interface. 

A method of constructing conservative interface treat- 
ments was presented. It was found that a whole class of con- 
servative treatments can be constructed. These treatments 
suffer from grid stretching error, and the smoothing 
operator is convective instead of dissipative. Finally, the 
accurate and the conservative treatments are compared in 
terms of accuracy, nonconservation error, simplicity, and 
possible extension to three dimensions. An interface treat- 
ment that avoids interface grid stretching error and that is 
nonconservative was found to be more accurate over a 
conservative treatment for viscous flows that do not include 
moving shocks. 
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